
The theory of the multirelaxational response of incommensurable modulated phases in order -

disorder systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 257

(http://iopscience.iop.org/0953-8984/8/3/006)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 13:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 257–272. Printed in the UK

The theory of the multirelaxational response of
incommensurable modulated phases in order–disorder
systems

O Hud́ak
Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ 180 40
Prague, Czech Republic

Received 14 November 1994, in final form 23 August 1995

Abstract. The response of incommensurable modulated phases is studied non-perturbatively in
materials with the order–disorder type of phase transition. We introduce a mode-independent
approximation for relaxation time and for interaction energy in the corresponding set of Bloch
equations of excitation motion. Using a simplified envelope method enabled us to calculate
the dynamic dielectric susceptibility of the incommensurate phase. Multirelaxational complex
behaviour is found. The effective relaxation time behaviour qualitatively corresponds to that
observed by Hatta in 1970 for NaNO2. It is a frequency-dependent quantity due to relaxation of
dispersionless excitations. The static dielectric susceptibility critical indexγ changes its value
from unity above the transition from the paraphase to the incommensurate phase to one-half
below this phase transition near to the lock-in transition. Low-frequency dynamic susceptibility
behaviour shows enhanced losses.

1. Introduction

The dynamics of ferroelectrics and antiferroelectrics in which motion of some units
is responsible for an order–disorder-type phase transition may be described by using
pseudospin formalism [1]. The ferroelectric phase and the phase with a sinusoidal
modulation in NaNO2 were described by a simple Ising-like model in 1963; see [2]. As has
been discussed, for example, in [3], the modulated sinusoidal structure may be stabilized
below some critical temperatureTc if there exists a non-zero wave vectorq0 maximizing
the quantityJq = ∑

j Jij exp(iq · (Ri − Rj )). Here theJij are the interaction energies
between two units localized at lattice sitesRi andRj . The dynamics of such a system is
described in the simplest case by the Ising-like Hamiltonian. This Hamiltonian is related
to those systems for which it was recently found that the response of the incommensurate
phase may become very non-trivial at low frequencies [4], where, besides quasiparticle-like
excitations, almost dispersionless bands of excitations are also predicted to exist. Within the
framework of the Heisenberg model, the incommensurate phase is found to respond at very
low frequenciesω → 0 in spite of the presence of a strong on-site magnetic anisotropy. The
origin of such a response lies in the fragmentation of the excitation energy spectrum [4].
Such a picture was also found in several other model systems [4]. Corresponding properties
in models based on the Ising-like Hamiltonians were not discussed until recently. As will
also be shown in our paper this task is an interesting theoretical problem in itself. However
the Ising-like model is appropriate for the description of a broad class of real ferroelectrics
and antiferroelectrics of the order–disorder type [5]. It is therefore clear that a comparison
of theoretical and experimental findings may be very useful.
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The multirelaxation behaviour of the incommensurate phase within the Ising pseudospin
model using the perturbation approach was studied recently [5]. Theoretical results and
their qualitative comparison with experimental findings indicate the presence of non-trivial
low-frequency behaviour in this type of system also. It was, however, concluded that
a non-perturbative approach should be used to see whether dispersionless low-frequency
excitations also change relaxation behaviour in this class of model. The present paper
contains the results for such a non-perturbative approach. It represents a continuation
of the recent work [6] where the model appropriate for the description of the Ising-like
order–disorder phase transition, from a paraphase to an incommensurable modulated ordered
phase, in NaNO2 type materials was used to describe relaxational behaviour. Corresponding
dynamic equations of the Bloch type were studied perturbatively. It was found that the
complex dielectric susceptibility, as a function of frequency, displays multirelaxational
behaviour due to the coupling of the homogeneous polar soft modes to higher-order modes.
In the present paper we continue to study the model equations found in [6]. Due to their
mathematically complex form (an infinite set of coupled second-order difference equations
with non-constant coefficients), we introduce a mode-independent approximation. This
enables us to find an approximate solution of the infinite number of coupled equations in the
explicit form. On the basis of the closed formulae some physical properties may be studied
more thoroughly within our simplified model. We discuss the low- and high-frequency
properties of the dynamic susceptibility, critical behaviour of the static susceptibility and
relaxation frequency behaviour in the incommensurate phase. A general form is found for
the motion of thenth excitation mode in the modulated phase due to the external field. The
dynamic dielectric susceptibilityχ is then found from the equation for the homogeneous
fluctuations and taking an appropriate limit toQ. In the zero-frequency limit the static
susceptibilityχ0 is explicitly calculated. Decreasing temperature from high temperatures to
the critical temperatureTc, the static susceptibility behaviour is of the known mean-field
type:

χ0 ≈ 1

T − T0
.

However, decreasing the temperature further, far belowTc but still aboveT0, the critical
behaviour of the static susceptibility changes to

χ0 ≈ 1√
T − T0

within the modulated phase. The change of the critical index is due to change in the
excitation spectrum of the incommensurable modulated phase with respect to the paraphase.
The critical indexγ changes its value from unity above toTc to one-half. This is a new
result, which should be tested experimentally. On the basis of the equations of motion, one
can say that the response of the incommensurate structure consists of a sum of an infinite
number of Debye-like relaxators with frequency distributions of their relaxation frequencies
and Curie constants. New excitations—normal modes of the incommensurable modulated
phase—are characterized by different relaxation times. These modes are contributing to
the resulting susceptibility at the same frequencyω. We have found a continuum of
states of excitation characterized by a continuously varying weighting, instead of the usual
quasiparticle-like spectrum, characterized by a weight function consisting of a sum of
singular delta terms characterizing the quasiparticle dispersions. We further show that lower
and lower relaxation frequencies become active when the temperature decreases. The real
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transition temperature from the incommensurate to the ferroelectric phase is slightly higher
than the virtual para–ferrophase transition temperatureT0. While zero-relaxation-frequency
processes do not occur within our simplified model in the incommensurate phase, it follows
from our calculations that the weight of low-frequency relaxation movements of pseudospins
increases with decreasing temperature. Low- and high-frequency behaviour of both the real
and imaginary parts of the dynamic susceptibility forT > T0 was explicitly found. Both the
imaginary and real parts of the susceptibility vanish in a power-like way when increasing
frequency. Qualitatively such behaviour resembles the behaviour of a single Debye-like
relaxator. In the last part of the paper we discuss the relation between our results and
the results of experiments made by Hatta [16] for NaNO2. Below the transition to the
incommensurate phase, a frequency dependence of the effective relaxation frequency is
observed. Its behaviour as found in this paper corresponds qualitatively with that observed
by Hatta: increasing frequency increases relaxation frequency. The temperature dependence
also corresponds qualitatively to that observed.

2. The model

The description of the order–disorder type of phase transition is based on the pseudospin
formalism. We will use a simple Ising model with competing interactions in one dimension.
A discussion of the dynamic properties of the incommensurate phases described within this
model has already been started in previous work [6]. In this section we would like to
display the main model properties for reference purposes.

The model HamiltonianHT , which we will use, was described in [3] and is given by

HT = −1

2

∑
i,j

Jij S
z
i S

z
j . (1)

HereSz
i are quantum operators describing pseudospin variables with eigenvaluesSz

i = ± 1
2

at lattice sitesi, wherei = 1, . . . , Nlatt . For simplicity we study a s.c. lattice withNlatt

sites in which each site represents a fluctuating unit (for example a hydrogen or deuteron
bond). Classical order–disorder ferroelectrics and antiferroelectrics are described by our
model assuming that the tunnelling energy [3] is neglected. Such a model is closely related
to the ANNNI model [7]. Real materials of the KDP and NaNO2 type are characterized by
more complicated structures and are described by more complicated models [8, 9]. Study
of our simplified model may give results which enable us to qualitatively demonstrate the
properties of expected new effects in real materials.

A simplification introduced into our model is to assume that the modulation occurs in the
(1, 0, 0) direction only. The modulation wave vector amplitudeQ = Q · a, wherea is the
basic lattice vector in the (1, 0, 0) direction, is determined by the free-energy minimization.
The Fourier transform of the interaction energyJ (q) is assumed to have the form

J (q) = 2J1 cos(q · a) + 3J2 cos(2q · a) + 2Jk(cos(q · b) + cos(q · c)). (2)

The interaction energy constantsJ1 and J2 describe interactions between the nearest
and next-nearest neighbours, respectively, in the modulation directiona, andJk describes
interactions between the nearest neighbours in the(b, c) plane perpendicular to the
modulation direction.
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Below some temperature given by

kTc ≡ J (Q)

4
(3)

the single plane-wave-modulated state〈
Sz

n

〉 = S cos(Qn + φ) (4)

is realized.S is the amplitude of the single plane wave, andφ is an arbitrary phase constant.
The amplitudeQ of the modulation vectorQ, whereQ ⊥ b, c andQ ‖ a, is found to be
given by

cos(Q) ≡ − J1

4J2
. (5)

The amplitude of the basic harmonics,S, depends on temperature in the mean-field
style:

S2 ≡ T 3

T 3
c

(
Tc

T
− 1

)
. (6)

Validity of (6) is restricted to temperatures which are not very low with respect to the
transition temperature where the single plane wave dominates. In the vicinity of the critical
temperatureTc the amplitude behaves in the known mean-field style:

S2 ≡
(

1 − T

Tc

)
.

Here and in the following, we assumed for simplicity that the modulation wave vector
amplitudeQ leads to the incommensurate single-plane-wave-modulated phase. We will not
discuss the effects of the lock-in energies.

Our aim is to study the response of the incommensurable modulated state, in the order–
disorder system described above, to small external fieldsEi(t) = Ei exp(iωt). The dynamics
of the excitations will be studied using the Bloch equations of motion as described in [3] (see,
e.g., equation (5.78) of [3]). Small fields generate small perturbations of the equilibrium
state. The mean value of the pseudospinSz

i at sitei, 〈Sz
i 〉t = 〈Sz

i 〉+ δ〈Sz
i exp(iωt)〉, is given

by

iωδ
〈
Sz

i

〉 = − 1

T1

(
δ
〈
Sz

i

〉 − β

4

(
1 − 4

〈
Sz

i

〉2)) ∑
j

Jijβ
〈
Sz
j

〉 − β

2

(
1 − 4

〈
Sz

i

〉2)
µEi. (7)

HereT1 is the longitudinal single-site relaxation time. The usual linearization procedure is
based on an approximation in which the quadratic〈Sz

i 〉2 terms in (7) are neglected. This step
is correct for ferroelectric and antiferroelectric systems not far below the critical temperature
at which a non-zero amplitudeS develops. For systems in a state modulated with a non-zero
wave vector different from those at the Brillouin zone boundary, this approximation would
be too crude a simplification. The presence of the quadratic terms leads to the coupling of
different paraphase normal modes below the critical temperature. New normal modes of
excitation in the ordered phase may have qualitatively different energy spectra. This is why
we consider the equation of motion (7) beyond the linear approximation.
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The Fourier transform of equation (7) gives, after some algebraic manipulations, an
infinite set of equations if the wave vectorQ is incommensurate with the underlying lattice.
It is convenient to introduce notation which simplifies the form of this set to

anSn + bn−1Sn−1 + bn+1Sn+1 = cen + gen−1 + gen+1 (8)

wheren is any integer,β ≡ 1/kBT :

an =
(

iω + 1

T1
− βJ (q + 2nQ)

4T1

(
1 − 2S2

))

bn = βS2

4T1
J (q + 2nQ) c = βµ

2T1

(
1 − 2S2

)
g = − βµ

2T1
S2

En = Eq+2nQ ≡ 1

Nlatt

∑
l

exp(i(q + 2nQ)l)El

en = En exp(−i2φn)

sn = Sn exp(−i2φn) ≡ δ
〈
Sz

q+2nQ

〉
exp(−i2φn).

(9)

Note that the wave vectorq has its magnitude limited to the region−Q < q 6 Q. The
quadratic terms mentioned above give termsSn+1 andSn−1 coupled to the termSn. In other
words, the paraphase normal modes corresponding toq + 2(n + 1)Q and q + 2(n − 1)Q

couple to the mode withq + 2nQ due to incommensurable modulation of the equilibrium
state.

From (9) we see that an infinite set of paraphase normal modes are coupled in the
incommensurate state. A homogeneous field also couples to an infinite number of paraphase
normal modes. The case of a commensurate phase would correspond to a periodicity
in the n-variable and thus would lead to a finite number of quasiparticle bands. The
incommensurate case fluctuation spectrum is much more complex in the exact mathematical
sense, as will be discussed in the next section.

3. A simplified model: mode-independent approximation

Let us consider those systems in which the maximum magnitude of the interaction
energy, J (Q), driving the paraphase to the modulated phase, is slightly higher than
the lowest interaction energyJ (0), which ‘prefers’ the ferroelectric phase. Thus we
consider physical systems in which the paraphase–ferrophase phase transition splits into
at least two transitions: paraphase—incommensurate phase and incommensurate phase–
ferrophase, and for which the temperature region in which the incommensurate phase exists
is small with respect to the temperature at which the virtual phase transition, paraphase–
ferrophase, would occur. Then we may introduce several approximations within the
previously defined model which enable us to study a system of an infinite number of
coupled equations (9) in a mathematically closed form. The solution which we obtain is,
however, physically non-trivial and displays new features concerning the multirelaxational
response of incommensurable modulated phases. We expect that, at least qualitatively, these
new features may be observed under appropriate conditions.
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The Fourier-transformed interaction energyJ (q) in (2) is assumed to have its maximum
value atq = Q corresponding to some modulated state. Its minimum value is expected to
be atq = 0, corresponding to the ferroelectric state. Such a situation occurs for example
in NaNO2 [10]. The relative value of the difference between the two energies is equal to
the relative value of the difference between the transition temperature from the paraphase
to the modulated phase,Tc, and the virtual transition temperature from the paraphase to the
ferroelectric phase,T0:

δ ≡ J (Q) − J (0)

J (0)
= Tc − T0

T0
. (10)

Taking into account thatT0 may be experimentally determined [10] from the paraphase
relaxation frequency temperature behaviour or from static dielectric temperature behaviour
it is possible to estimate the quantityδ for NaNO2: it is approximately of the order of 0.005.
Whenever the quantity calculated in (10) is as small, the interaction energyJ (q), for any
value of the wave vectorq exceptq = Q, may be approximated (in the zeroth order in
(Tc − T0)/T0) by J (0) in the dynamic equation (9):

J (q) = J (0) + (J (Q) − J (0))
(
δq,Q + δq,−Q

)
.

Such a substitution still preserves the static modulated ground state withq = Q but simplifies
the dynamic equations. The Fourier transform into direct space, withN the number of crystal
planes in the modulation direction, gives

J (r − m) = J (0) δr,m + 2(J (Q) − J (0))

N
cos(Q(r − m))

which corresponds to an infinite-range effective oscillatory pseudospin–pseudospin
interaction.

The single plane waveSz
n = S cos(Q(r − m)) still remains in the ground state, as may

be easily verified. Note, however, that now

J (2nQ) = J (0)

for all non-zero integersn if Q takes an incommensurate value. It is reasonable to
assume that, for those values of the system parameters for which the quantity (10) is
small, the incommensurate phase may be practically characterized by the single-plane-
wave regime: thus we neglect quantities of the order of(Tc − T0)/T0 and higher orders
while we still consider fluctuationsSn of the order ofS|2n|. It is clear that our approach is
more appropriate for temperatures not very far from the paraphase-to-incommensurate phase
transition temperature. The approximation concerning the interaction energies, which we
will use, leads to the following simplifications: (1) a mode-independent relaxation time; (2)
mode-independent interaction energy; and enables a clear approach to incommensurability
to be made via a limiting process using a sequence of commensurate phases.

3.1. Independent-relaxation-time approximation

The dynamic equations (9) are characterized by a set of the relaxation frequencies

1

T1
− βJ (q + 2nQ)

4T1

(
1 − 2S2

)
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which correspond to different modes of fluctuations characterized byq and n. Due to
a lattice-site-dependent interaction energyJ , each mode is characterized by a different
relaxation frequency in the incommensurate phase. Introducing an effective interaction
energy J (0), as described in the preceding subsection, a set of the above mentioned
relaxation frequencies will be substituted for with a single relaxation frequency:

1

T1
− βJ (0)

4T1

(
1 − 2S2

)
.

The coefficientsan from (9) take the same form for each mode:

an =
(

iω + 1

T1
− βJ (0)

4T1

(
1 − 2S2

)) ≡ (iω + a)

which is a mode- (indexn-) independent form. The physical background for this substitution
is straightforward: the original set of different relaxation times is represented by the largest
one.

3.2. Independent-relaxation-energy approximation

The dynamic equations (9) are further characterized by a set of interaction constants

bn = βS2

4T1
J (q + 2nQ)

which again correspond to different modes of fluctuation. Due to the space-dependent
interaction energyJ each two ‘neighbouring’ modes interact with different interaction
energies in the incommensurate phase. Let us now introduce an effective interaction energy
J (0) as discussed above. Then the set of the interaction constants will be substituted for
with a single interaction constantb. The coefficientsbn from (9) take the identical explicit
form

bn = βS2

4T1
J (0) ≡ b

which is a mode- (indexn-) independent form.

3.3. An approximation for the dynamic equations

We apply to our simplified model system a general time- and site-dependent electric field
Ei(t). The Fourier transform of equation (7) gives an infinite set of equations, and on
assuming the mode-independent approximation as described above to hold the equations (9)
take the form

(iω + a)S0
n + bS0

n−1 + bS0
n+1 = cen + gen−1 + gen+1. (11)

Let us writeδan = an − a, δbn = bn − b and δSn = Sn − S0
n. HereSn is assumed to

satisfy (9). Then the equations (11) become equivalent to the original equation (9), if we
simultaneously solve

an δSn + bn−1 δSn−1 + bn+1Sn+1 = −δanS
0
n − bn−1S

0
n−1 − bn+1S

0
n+1. (12)

Thus, our approximation in which we reduce (9) to the set of equations (11) is equivalent
to neglecting equation (12) with respect to (11). In this paper we discuss only (11).
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3.4. A sequence of commensurate phases

The infinite set of equations (11) may be easily solved using a limiting procedure in which
the incommensurate phase with the modulation wave vectorQ is approached by a sequence
of commensurate phases with the modulation wave vectorsQ(L, M)

Q(L, M) ≡ 2πM

L

where

lim
M, L→∞

Q(L, M) = Q.

Now a procedure which leads easily to the solution of (9) consists in solving (11) for finite
appropriate integersL andM, and then taking the above limit.

3.5. The solution for a general mode

Let us thus firstly assume thatQ is commensurate, and given by a correspondingM and
L. The solution of the equations (11) for modesSn is searched for in the form of a Fourier
expansion:

Sn =
L/2∑

κ=−L/2+1

exp

(
i
2π

L
κn

)
Sκ

for any value of momentumq. It is clear that the periodicity condition holdsSn+L = Sn.
Directly from (11) we obtain

Sκ = 1

L

∑
n

(c + gen−1 + gen+1) exp(−i(2π/L)κn)

iω + a + 2b cos(2πκ/L)
.

For the inverse form and the homogeneous field we obtain

Sn = 1

L
E

∑
κ

(c + 2g cos(2πκ/L))

iω + a + 2b cos(2πκ/L)
exp

(
i
2π

L
κn

)
Sκ (13)

which is a general form for the motion of thenth mode due to the external field.

4. Dynamic and static susceptibility

The dynamic dielectric susceptibilityχ is found from equation (13) for the homogeneous
fluctuationsn = 0 and taking an appropriate limit forQ. Assuming that the electric field
perturbing the equilibrium state is the homogeneous fieldEi = E and using the definition
for the susceptibilityχ = 2µS0/E, where the zeroth modeS0 is calculated from (13), we
find

χ = µNlatt

π

∫ +π

−π

(c + 2g cos(x))

iω + a + 2b cos(x)
dx. (14)
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The real part of the dynamic susceptibility is then found to have the following form:

χ ′ = µNlatt

π

∫ +π

−π

(a + 2b cos(x)) (c + 2g cos(x))

ω2 + (a + 2b cos(x))2
dx. (15)

The imaginary part of the dynamic susceptibility is found to have the following form:

χ ′′ = −ωµNlatt

π

∫ +π

−π

c + 2g cos(x)

ω2 + (a + 2b cos(x))2
dx. (16)

In the zero-frequency limit of (14), the static susceptibilityχ0 may be explicitly
calculated. We have found the following explicit form:

χ0 = µ2Nl

kBT

1√
(T − T0)/T

√
(T − T0)/T + 4S2T0/T

[
1 − 2S2

− T

T0

(√
T − T0

T

√
T − T0

T
+ 4S2T0

T

)
−

(
1 − T

T0

(
1 − 2S2

))]
(17)

On decreasing the temperature aboveTc, the static susceptibility behaviour, predicted from
(17), is of the known mean-field type:

χ0 ≈ 1

T − T0
.

The critical index associated with the divergence of the static susceptibility in this
temperature region is unity. On further decreasing the temperature belowTc (but still
keeping it aboveT0) the critical behaviour of the static susceptibility changes to

χ0 ≈ 1√
T − T0

as may be easily shown from (17).
The critical indexγ has now changed in value from unity, which is its value aboveTc,

to one-half. It is clear that by using scaling relations between different static and dynamic
critical indices one may derive their new values. Due to lack of space this point is not
considered in the present paper. Thus, our model predicts substantially different critical
behaviour for the static susceptibility in the modulated region. We have displayed the
behaviour of the inverse static susceptibility (17) in figure 1.

There is a local minimum aroundTc which is then changed to a local maximum followed
by a steep decrease. There is uncertainty concerning the experimental behaviour of the
dielectric static susceptibility [10]. The values of the critical index which are reported are
1.11–1.24. These values are obtained from fits within the paramagnetic phase, where the
dielectric static susceptibility departs from the mean-field behaviour, which occurs above
500 K only. Do interacting fluctuations of the forming incommensurate phase renormalize
paraphase behaviour in a way corresponding to experiments? It is found here that the
well known mean-field-type behaviour changes to another type of behaviour even within
the mean-field-like approach taken here. It may be expected that other static and dynamic
properties may also be renormalized with respect to those described using classical mean-
field theories (see, e.g. [10] and references therein).
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Figure 1. The behaviour of the inverse static susceptibility (17).

5. Dispersionless modes

On the basis of equation (14) one can say that the response of the incommensurate structure
consists of a sum of an infinite number of relaxators with their relaxation frequencies:

1

τx

≡ a + 2b cos(x).

After substituting for constantsa andb we obtain

1

τx

= T − T0

T1T
+ T0S

2 cos2(x/2)

T1T
.

Here the efficiency temperatureT0 is defined asJ (0)/(4kB). The maximum value of the
relaxation frequency is

T − (1 − S2T0)

T1T
.

The minimum value of this relaxation frequency is

T − T0

T1T
.

Both extremal values are the same when the temperature increases to the transition
temperatureTc, where the amplitudeS decreases to zero. Their difference reveals such
behaviour explicitly:

max
1

τeff (x)
− min

1

τeff (x)
= S2T0

T1T
.
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Thus the spread of relaxation frequencies which originates from interaction of modes
increases on decreasing the temperature below the transition temperature.

The Curie constants take the form

µNlatt

π

c + 2g cos(x)

a + 2b cos(x)
.

Both of the resulting quantities (i.e. the relaxation frequency and the Curie constant) are
now mode dependent—see theirx-dependence.

The dynamic susceptibility may be written in the form

χ = χ0

∫ +π

−π

w(x)

iωτx + 1
dx (18)

whereχ0 is the static susceptibility, and the weight of anx-relaxation mode contribution to
the susceptibility is defined by

w(x) ≡ 1

2πχ0

1 + 2(q/c) cos(x)

1 + 2(b/a) cos(x)
.

It is normalized to unity:

1 =
∫ +π

−π

w(x) dx.

The explicit form of the weight function is

w(x) ≡ 1

2πχ0

1 − [2S2/(1 − 2S2)] cos(x)

1 + [2S2/(2S2 − 1 + T/T0)] cos(x)
.

It is clear from this form that below the critical temperature and above the effective
temperatureT0 there is no singular point in the weight function.

One may interpret the form (18) of the dynamic susceptibility as the sum of an infinite
number of relaxation modes, each characterized by the labelx, its densityw(x), and its
relaxation frequency 1/τx . The independent-relaxation-time approximation as applied in
section 3.1 approximates different relaxation times by the same time for the paraphase
normal modes with the same wave vectorq and differing by the vector 2nQ. New
excitations—normal modes of the incommensurable modulated phase—are characterized,
as follows from (18), by different relaxation times. These modes are contributing to the
resulting susceptibility at the same frequencyω. Note that we have found a continuum of
states of excitations characterized by the continuously varying weightingw(x) instead of
a quasiparticle-like spectrum characterized by the weight function consisting of a sum of
singular delta terms characterizing quasiparticle dispersions.

Such an interpretation of excitation spectra within our model is closely related to that
for other similar systems made by Lovesey and co-workers [4, 11–13].
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6. Square-root singularities

The imaginary part of the dynamic susceptibility may be easily transformed to the following
form, which is more transparent:

χ ′′ = −χ0ω

π

∫ y+

y−
dy

1√
(y+ − y)(y − y−)

1 + 2g(2y − δ+)/δ−
y2 + ω2

(19)

where

χ0 ≡ 2µNlatt

c

a
δ± ≡ y+ ± y−.

The form (19) was obtained from (14) by takingy = a + 2b cos(x).
The real part of the dynamic susceptibility may also be easily transformed to the more

transparent form:

χ ′ = χ0

π

∫ y+

y−
dy

y√
(y+ − y)(y − y−)

1 + 2g(2y − δ+)/δ−
y2 + ω2

. (20)

From (19) and (20) we see that the weightw(y) is proportional to the inverse square
root:

w(y) ≈ 1√
(y+ − y)(y − y−)

.

The first square-root singularity is localized at the pointy+, which in its explicit form

y+ = 1

T1

(
1 − βJ (0)

4kB

(
1 − 4S2

))
does not depend on temperature, if we modify the mean-field form for the wave amplitude
to

S2 = 1

4

(
1 − T

Tc

)
instead of using the original form

S2 =
(

1 − T

Tc

)
.

Theny+ takes the form

y+ = 1

T1

(
1 − T0

Tc

)
.

The explicit form of the lower-root-singularity location obtained by steps similar to
those followed in the case of the upper one is temperature dependent:

y− = 1

T1

(
1 − T0

T

)
.

Note that bothy+ and y− are positive for temperatures higher thanT0. On decreasing
the temperature towardsT0 the quantityy− vanishes. Correspondingly, lower and lower
relaxation frequencies become active when temperature decreases. The real transition
temperature from the incommensurate to the ferroelectric phase is slightly higher than the
virtual para–ferrophase transition temperatureT0. This means that while zero-relaxation-
frequency processes do not occur within our model in the incommensurate phase, it follows
from our calculations that the weight of low-frequency relaxation movements of pseudospins
increases with decreasing temperature.
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7. Low-frequency behaviour,T>T0

The low-frequency behaviour of both the real and imaginary parts of the dynamic
susceptibility forT > T0 may be easily found due to the fact thaty− > 0. The meaning of
‘low frequency’ is defined as referring to those frequencies for which the conditionω < y−
holds.

From (19) and (20) it follows that when the inequality above holds, both parts of the
susceptibility may be expanded in powers of frequency:

χ ′ ≈ A − Bω2 + O
(
ω4

)
χ ′′ ≈ Cω − Dω3 + O

(
ω5

)
.

We have found that constantsA, B, C andD are given by

a ≡ 1 − 2
g

c

y+ + y−
y+ − y−

b ≡ 4
g

c

1

y+ − y−
A ≡ I2a + I1b B = I4a + I3b C = I1a + I0b D = I3a + I2b

I0 = 1 I1 = 1√
y+y−

I2 = y+ + y−
2(y+y−)3/2

I3 = 3(y+ + y−)2 − 4y+y−
8(y+y−)5/2

I4 = 15(y+ + y−)3 − 36y+y−(y+ + y−)

48(y+y−)7/2
.

At a rough estimate, there are maximal losses at the frequency

ω2
e ≈ C

3D
.

The halfwidth of the peak is

HW = 2ωe√
3

.

The effective relaxation frequency becomes frequency dependent:

1

τeff

≡ χ ′ω
χ ′′ ≈ 1

τeff

(0)
(
1 + ρω2

)
where

1

τeff

(0) ≡ A

C
ρ ≡ B

A
− D

C
.

The effective relaxation frequency increases quadratically when frequency increases, at least
at low frequencies and temperatures immediately below the transition temperature. We have
estimated constantsA, B, C and D from the explicit form of the corresponding integrals
and found that

1

τeff

≈ 1

τeff

(0)
(

1 + α
(
ω2τ 2

eff (0)
))

S4. (21)

The correction to the zero-frequency behaviour is of the orderS4, in agreement with
our previous perturbative calculations [5].
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The zero-frequency effective relaxation frequency(1/τeff )(0) is temperature dependent:

1

τeff

(0) = 1 − T1

√
α2 − 4b2

α/(α2 − 4b2) − T1

where

α ≡ 1

T1
− βJ (0)

4T1

(
1 − 2S2

)
b ≡ βS2

4T1
J (0).

The behaviour of the effective zero-frequency relaxation frequency below the transition
temperature from the paraphase to the incommensurate phase is renormalized with respect
to the paraphase behaviour given by

1

T1
− βJ (0)

4T1
.

Note that around the transition pointTc we find

1

τeff

(0) ≈ α ≈ (
T − T0

)
and below this temperature point fluctuations above the ground state do not qualitatively
change this temperature dependence, and

1

τeff

(0) ≈ α − 2b ≈ (
T − T0

)
.

A softening of the relaxation frequency belowTc continues from above this point; however,
the proportionality coefficient is renormalized.

8. High-frequency behaviour,T>T0

The high-frequency behaviour of both the real and the imaginary part of the dynamic
susceptibility forT > T0 may be easily found due to the fact thaty+ > 0 remains finite
for the temperature region considered. ‘High frequency’ is defined as referring to those
frequencies which satisfy the conditionω > y+.

From (19) and (20) we see that when the above inequality holds both parts of the
susceptibility may be written in the form

χ ′ ≈ F
1

ω2
+ O

(
ω−4

)
χ ′′ ≈ G

1

ω
+ O

(
ω−3

)
.

Here F and G are temperature-dependent constants. We see that both the imaginary
and real parts of the susceptibility vanish in a power-like way with increasing frequency.
Qualitatively such behaviour resembles the behaviour of a single Debye-like relaxator. The
effective relaxation frequency becomes frequency independent now:

1

τeff

≡ χ ′ω
χ ′′ ≈ F

G
.
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9. Discussion

Interactions of the homogeneous mode with higher-order modes due to an incommensurable
modulated ground state change the usual single-mode-relaxation Debye-like behaviour of the
paraphase to a more complicated behaviour. A multirelaxational character to the response
is found. It should be present even in the single-plane-wave limit of the modulation; it
is this single-plane-wave limit that is studied in this paper. One may argue in the same
way as in [8] that results for the single-plane-wave limit also give a qualitatively correct
picture for modulated states within which higher harmonics are present. Moreover the
single-plane-wave limit leads to mathematical tractability. Note that in some materials—the
compound NaNO2 is a good example—there is no experimental evidence for the third and
higher harmonics in the incommensurable modulation of the equilibrium state [10]. In the
calculations above, an infinite number of modes coupled to the basic homogeneous one
were considered. Their contributions to the dynamic susceptibility qualitatively change its
behaviour. General forms of both the real and imaginary parts of the susceptibility were
found in the closed form.

For a system of Ising spins close to its ordering temperature according to [10], it is
generally expected that the order parameter dynamic susceptibility could be described in
terms of a single Debye relaxation:

χ(q, ω) = χ(q, 0)

1 + iωτ(q)
.

Suzuki and Kubo [14] have found that the relaxation time diverges atTc for the critical
wave vector of modulation. A monodispersive dielectric relaxation in the paraelectric phase
in NaNO2 was found in [15]. The Cole–Cole diagrams are characterized by the parameter
β = 0.94 in the cited paper. The observed dispersion is seen to be close to the single-
Debye-relaxation process. BelowTc one expects to observe two relaxation mechanisms
with relaxation times corresponding to the amplitude and phase fluctuations [10]. Both
relaxation times are expected to be frequency independent. Hatta [16] verified the validity
of the single-Debye-relaxation model aboveTc. He was able to fit his measurements to

τpara = 2.4 × 10−8
(
T − T0

)−1/3
s.

The temperatureT0 is the same as the temperature found from the fit of the static
susceptibility aboveTc to the Curie–Weiss law. BelowTc an attempt to fit the relaxation
time to a single effective relaxation time clearly indicates frequency dependence. While
the temperature behaviour of the effective relaxation time resembles that of the phase
relaxation [10], there is no reason for which the phase relaxation should dominate the
dielectric response atq = 0 of the modulated structure. The frequency dependence of the
imaginary part of the complex dielectric constant in the temperature region of the modulated
phase shows clearly (see [16], figure 1) that decreasing temperature shifts the weight of this
part of the susceptibility to lower frequencies. Moreover, experiments carried out by Hatta
in 1970 on NaNO2 reveal immediately the frequency dependence of the effective relaxation
frequency below the transition to the incommensurate phase. Its theoretical behaviour
as found in our paper corresponds qualitatively with that observed by Hatta: increasing
the frequency increases the effective relaxation frequency. Also the predicted temperature
dependent qualitatively corresponds to that observed. However, the author failed to perform
a more precise comparison of the theoretical predictions of this paper with the experimentally
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observed dependences due to the absence of relevant measurements. It would be useful to
produce a temperature–frequency diagram for the effective relaxation frequency and for the
effective Curie constant, as an example. The value of the critical exponentγ would also
be useful. Our theory predicts its change from the usual mean-field value to a new value
of one-half. It would be interesting to perform the corresponding measurements on NaNO2

as well as on other appropriate materials.
To summarize, we note that our model enables us to describe in a straightforward

way the response of the incommensurable modulated phases in order–disorder systems.
While a more detailed mathematical approach would predict the known Cantor-set type of
the fragmented energy spectrum, it would be difficult to verify such a spectrum and its
consequences in real materials. Our approach is based on Lovesey’s idea of an envelope
description of this energy spectrum and as such it certainly omits some features specific to
Cantor sets. However, the independent-mode approximation used here is of predictive value:
there are new predictions concerning the multirelaxational response of the incommensurate
phase in materials with an order–disorder type of phase transition.
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